

LusTRE: Linked Thesaurus fRamework for the Environment

P. Podestà, R. Albertoni, M. De Martino (CNR- IMATI)A. Abecker, R. Wössner (disy)

INSPIRE 2015 Lisbona, 25-29 May 2015

■ LusTRE Overview

- Context
- Strategy
- Outcomes

■ LusTRE Components

- LusTRE-VOC (knowledge infrastructure)
- LusTRE-WEBe (web exploration tool)
- LusTRE-ES (exploitation services)

■ LusTRE Exploitation

- Stand alone application
- Third party client application
- LusTRE Indicators
- Planned Activity and Conclusion

LusTRE Overview

LusTRE Overview Context

Motivation EU projects Nature SDI and eENVPlus:

- Several environmental terminologies
- Heterogenity wrt thematic coverage, multilingualism, granularities, popularity in certai ommunities

EUNIS EUNIS Species IUCN DMEER Habitat Protected Region The Thesaurus [UGS-CG] INSPIR Framework Code List Themes register **DBPedia GEMET** ÍNSPIRE **IFCD** GROVOC register EuroVoc

Write a MEW "global" terminology

- Reuse and integration existing terminologies
- Crosswalking between terminologies

LusTRE Overview Strategy

Thesaurus Framework as solution to the multilingual and multicultural issues in the environmental data sharing

- ☐ A "common terminology" for the environment to
 - Provide a widely shared concepts
 - Joint exploitation of available teminologies referring to different INSPIRE data Theme
- ☐ A set of services to exploit the Thesaurus Framework
 - > To promote uniform data description during metadata provison
 - > To improve resource discovery across applications and platforms

INSPIRE Implementation rules

recommend the adoption of (multilingual) thesauri when compiling metadata for data/services

LusTRE Overview Outcome

- ☐ Linked Thesaurus fRamework for Environment (LusTRE)
- > A knowledge infrastructure of linked Thesauri (LusTRE-VOC)
- ➤ A personalized user-friendly Web interface and exploration tool for search and browse information, like a LD front end (LusTRE-WEBe)
- ➤ A set of Web Services to exploit the knowledge infrastructure (LusTRE-ES)

LusTRE Components LusTRE design principles

LusTRE-VOC

- Identification of suitable environmental vocabulary according with "reusability" criteria (Licence openness and LD compliance: dereferenceable uri, 5 star classification)
- Vocabularies processing and publication (LodRefine tool -SKOS/RDF)

Automatic generation interlinking (SILK tool) and validation with the Expert community

- Interlinking among vocabularies inside LusTRE
- Interlinking towards external LD vocabularies
- server setting up and maintenance based on VIRTUOSO

LusTRE-WEBe

Design and development of smart Web exploration interface suitable for human-readable browsing, deployed in Apache Tomcat

LusTRE-

In-house java-based web services, deployed in Apache Tomcat

LusTRE Components Overview

LusTRE-VOC: knowledge Infrastructure

eENVplus Review Meeting Luxemburg, 12 February 2015

LusTRE-ES: exploitation services

LusTRE-WEBe: Exploration tool

Third party client application

- ☐For metadata management:
 - Metadata description INSPIRE Compliant
 - □EUOSME Metadata editor: to select a concept of LusTRE and its associated URI as metadata keyword

(http://showcase.eenvplus.eu/client/editor.htm)

"INSPIRE" Geoportal Data (awarded to Planetek): to search by keyword (http://inspire-geoportal-eenvplus.planetek.it)

LusTRE Explotation

Third party client application

- ☐ For data analysis (pilot of EU project eENVplus)
 - (under development) Advanced data search and analysis of Species crowdsourced data in the eENVPlus Crowdsourcing DB (CrowdDB)

1 - Query EUNIS Species and Habitat in LusTRE 3 - Advanced data search and analysis in Crowd DB using information from LusTRE

Crowd DB

LusTRE

2 - Information from LusTRE

4 - Visualize information from Crowd DB

LusTRE Indicators

LusTRE Indicators LOD cloud 2014 outcome

■ EARTh and ThiST are included in the latest LOD Cloud 2014

LusTRE Indicators INSPIRE Data Theme coverage

LusTRE Indicators Multiligualism Coverage

skos:preflabel of LusTRE concepts wrt languages

Number and location of access

□ log access numbers :

131033 access to LusTRE - period 25 September to 9 December 3962 access to services - period 4 November to 9 December

Map of access locations done during December 2014

LusTRE Conclusion What is Next ...

LusTRE Conclusions

□Outcomes: LusTRE Knowledge Infrastructure for a "common" terminology for "All" Web Services and web interface and exploration tool ☐ to metadata compilation ☐ to information discovery □ Next release ☐ New services LuSTRE - ES: Semantic explorative search with semantic visualization (June) ☐ Web Application exploiting LuSTRE to analyse Species crowdsourced data

For more information Attend the workshop: «eENVplus» next Friday Visit the stand «eENVplus» at the exibiton Whenever you meet us Enjoy LusTRE: http://linkeddata.ge.imati.cnr.it/

Contact Persons:

Thanks for attention!

roman.woessner@disy.net **INSPIRE 2015** Lisbon, 25-29 May 2015

CNR-IMATI

demartino@ge.imati.cnr.it albertoni@ge.imati.cnr.it podesta@ge.imati.cnr.it

andreas.abecker@disy.net

Disv

APPENDIX

First Year Activity

Task 4.1: reusability analysis

■ Tim Berners-Lee 5 stars classification (LOD compliance) (http://www.w3.org/DesignIssues/LinkedData.html)

Critical issues in order to be included in TF:

- Dereferenceable URI
 - ☐ are the basic prerequisite to have Linked Data, without them, it is not possible to check what a URI stands for, and so identifiers are not truly reusable.
- Open licence with right to publish derivative works

Linked Data compliance

- 5 Stars classification of LD by Tim Berners-Lee
- HTTP dereferenceability of the URI mandatory LD prerequisite

1 star	resources available on the web (whatever format)
2 stars	resources available as machine-readable structured data (e.g., Excel)
3 stars	as 2 stars plus non-proprietary format (e.g., CSV instead of Excel)
3,5 stars	resources available as RDF dump without dereferenceable HTTP URI
3,9 stars	resources provided as RDFa (RDF embedded in XHTML) or SPARQL end point which are very close to be LD ready but without dereferenceable HTTP URI
4 stars	all the above plus, use open standards from W3C (RDF and SPARQL) and HTTP dereferenceable URI to identify things, so that people can point at published resources
5 stars	all the above, plus interlinks to other data to provide context

Framework Creative Common

Licence (acronym)	Characteristics	Licence reusability evaluation
Public Domain (CC0)	All the rights have been waived	5
Attribution (CC-BY)	Attribution is required	4.5
Share alike (CC-SA)	Copyleft licence	4
With restrictions (CC-NC , CC-ND, CC-NC-ND)	More severe restrictions	3.5
Closed (CR)	Closed licence	3
In progress (Pr)	Licence is going to be defined soon	2
Not found (NF)	No licence has been found in the website	1

LD Best practice summary

STEP #1 PREPARE STAKEHOLDERS:

Prepare stakeholders by explaining the process of creating and maintaining Linked Open Data.

STEP #2 SELECT A DATASET:

Select a dataset that provides benefit to others for reuse.

STEP #3 MODEL THE DATA:

<u>Modeling Linked Data</u> involves representing data objects and how they are related in an application-independent way.

STEP #4 SPECIFY AN APPROPRIATE LICENSE:

Specify an appropriate open data license. Data reuse is more likely to occur when there is a clear statement about the origin, ownership and terms related to the use of the published data.

STEP #5 GOOD URIS FOR LINKED DATA:

The core of Linked Data is a well-considered URI naming strategy and implementation plan, based on <u>HTTP</u> <u>URIs</u>. Consideration for naming objects, multilingual support, data change over time and persistence strategy are the building blocks for useful Linked Data.

STEP #6 USE STANDARD VOCABULARIES:

Describe objects with previously defined <u>vocabularies</u> whenever possible. Extend standard vocabularies where necessary, and create vocabularies (only when required) that follow best practices whenever possible. STEP #7 CONVERT DATA:

Convert data to a Linked Data representation. This is typically done by script or other automated processes. STEP #8 PROVIDE MACHINE ACCESS TO DATA:

Provide various ways for search engines and other automated processes to access data using standard Web mechanisms.

STEP #9 ANNOUNCE NEW DATA SETS:

Remember to announce new data sets on an authoritative domain. Importantly, remember that as a Linked Open Data publisher, an implicit social contract is in effect.

STEP #10 RECOGNIZE THE SOCIAL CONTRACT:

Recognize your responsibility in maintaining data once it is published. Ensure that the dataset(s) remains available where your organization says it will be and is maintained over time

LusTRE Components LusTRE design principles

LusTRE-VOCVocabulary

- Identification of suitable environmental vocabulary according with "reusability" criteria (Licence openness and LD compliance: dereferenceable uri, 5 star classification)
- Vocabularies processing and publication (LodRefine tool -SKOS/RDF)

LusTRE-VOC Interlinking

- Automatic generation interlinking (SILK tool) and validation with the Expert community
 - Interlinking among vocabularies inside LusTRE
 - Interlinking towards external LD vocabularies

LusTRE-VOC deployment

• server setting up and maintenance based on VIRTUOSO

LusTRE-WEBe

• Design of smart Web exploration interface suitable for human-readable browsing, deployed in Apache Tomcat

LusTRE-ES

• In-house java-based web services, deployed in Apache Tomcat